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S Lübeck1,2 and R D Willmann1,3

1 Department of Physics of Complex Systems, Weizmann Institute, 76100 Rehovot, Israel
2 Theoretische Tieftemperaturphysik, Gerhard-Mercator-Universität, 47048 Duisburg, Germany
3 Institut für Festkörperforschung, Forschungszentrum Jülich, 52425 Jülich, Germany
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Abstract
We consider the scaling behaviour of directed percolation and of the pair contact
process with a conjugated field. In particular we determine numerically the
equation of state and show that both models are characterized by the same
universal scaling function. Furthermore we derive the equation of state for
the pair contact process within a mean-field approach which again agrees with
the mean-field equation of state of the directed percolation universality class.

PACS numbers: 05.70.Ln, 05.50.+q, 05.65.+b

1. Introduction

In this paper we consider the scaling behaviour of direction percolation (DP) and of the pair
contact process (PCP) numerically in 1 + 1 dimensions and analytically within a mean-field
approximation (see for a review [1]). Both models display a continuous phase transition from
an active to an inactive state. In contrast to the unique absorbing state of DP, the PCP is
characterized by infinitely many absorbing states. Despite this difference it was observed in
numerical simulations that the critical exponents describing the steady-state scaling behaviour
of the PCP agree well with those of DP [2, 3]. This result is in agreement with a renormalization
group analysis of a phenomenological field theory approach of the PCP which reduces in the
steady state to the corresponding DP equation [4].

In this work we consider the steady-state scaling behaviour of DP and the PCP in an
external field which is conjugated to the order parameter. In particular we examine the
scaling behaviour of the order parameter (equation of state) as well as of the order parameter
fluctuations. In contrast to previous works on the PCP, we do not restrict our attention to the
critical exponents but consider the so-called universal scaling functions too. In this way we
are able to show that both models are characterized by the same universal scaling behaviour,
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i.e. the steady-state scaling behaviour of the PCP belongs to the universality class of directed
percolation.

In the next section we briefly review the scaling behaviour of DP and define the scaling
functions. We consider then in section 3 for the first time the PCP in a conjugated field and
show that the scaling behaviour is characterized by the DP critical exponents. The universal
scaling behaviour of DP and the PCP is presented in section 4. The obtained universal
equation of state is compared to the results of a two loop renormalization group approach of
the corresponding Langevin equation [5]. Finally we derive the equation of state of the PCP
within a mean-field approximation. Therefore, we consider the PCP with particle creation at
randomly selected sites. This random neighbour interaction suppresses long range correlations
and the model is analytically tractable.

2. Directed percolation

In order to examine the scaling behaviour of the (1 + 1)-dimensional DP universality class we
consider the directed site percolation process using the Domany–Kinzel automaton [6]. It is
defined on a diagonal square lattice and evolves by parallel update according to the following
rules. A site at time t is occupied with probability p2 (p1) if both (only one) backward
sites (time t − 1) are occupied. If both backward sites are empty a spontaneous particle
creation takes place with probability p0. Directed site percolation corresponds to the choice
p1 = p2 = p and p0 = 0. The propagation probability p is the control parameter of the phase
transition, i.e. below a critical value pc the activity ceases, and the system is trapped forever in
the absorbing state (empty lattice). On the other hand, a non-zero density of (active) particles
ρa is found for p > pc. The best estimate of the critical value of directed site percolation is
pc = 0.705 489(4) [7] and we use this value throughout this work.

The density of active sites ρa is interpreted as the order parameter of the absorbing phase
transition and vanishes at the critical point according to

ρa ∝ δpβ (1)

with δp = (p −pc)/pc. Furthermore the order parameter fluctuations �ρa = L
(〈
ρ2

a

〉 − 〈ρa〉2
)

diverge as

�ρa ∝ δp−γ ′
. (2)

The fluctuation exponent γ ′ obeys the scaling relation γ ′ = ν⊥ − 2β, where ν⊥ describes the
divergence of the spatial correlation length at the critical point. The critical behaviour of the
order parameter is shown in figure 1. The data are obtained from numerical simulations of
systems with periodic boundary conditions. Considering various system sizes L � 131 072
we take care that our results are not affected by finite-size effects.

Similar to equilibrium phase transitions it is possible in DP to apply an external field h that
is conjugated to the order parameter. Being a conjugated field it has to destroy the absorbing
phase and the corresponding linear response function has to diverge at the critical point, i.e.

χ = ∂ρa

∂h
→ ∞. (3)

In DP the external field is implemented (see for instance [1]) as a spontaneous creation of
particles (p0 = h > 0). Clearly the spontaneous creation of particles destroys the absorbing
state and, therefore, the absorbing phase transition at all. Figure 1 shows how the external
field results in a smoothing of the zero-field order parameter curve. The inset displays that
the fluctuations peak for finite fields. Approaching the transition point (h → 0) this peak
becomes a divergence signalling the critical point.



Universal scaling behaviour of directed percolation and the pair contact process in an external field 10207

0.66 0.68 0.70 0.72 0.74
p

0.0

0.2

0.4

0.6

0.8

ρ a

L= 8192
L=16384
L=32768
L=65536

0.66 0.68 0.70 0.72 0.74
p

10
–1

10
0

10
1

∆ρ
a

D=1

DP

Figure 1. The directed percolation order parameter ρa as a function of the particle density for zero
field (symbols) and for various values of the external field (h = 10−4, 2 × 10−4, 5 × 10−4, 10−3)

(lines). The inset displays the order parameter fluctuations �ρa for zero field (symbols) and for
various values of the external field h (lines).

Close to the transition point the order parameter and its fluctuations obey the following
scaling ansätze:

ρa(δp, h) ∼ λr̃sDP(δpλ−1/β , hλ−σ/β ) (4)

�ρa(δp, h) ∼ λγ ′
d̃sDP(δpλ, hλσ ) (5)

with the scaling functions r̃sDP and d̃sDP, where the index sDP denotes site directed percolation.
The scaling function of the order parameter corresponds to the equation of state, and we recover
equation (1) by setting δρλ−1/β = 1 at h = 0. On the other hand, setting hλ−σ/β = 1 leads to

ρa(δp = 0, h) ∝ hβ/σ (6)

at δρ = 0. Analogously we get the scaling behaviour of the fluctuations at pc

�ρa(δp = 0, h) ∝ h−γ ′/σ (7)

as well as equation (2). The field dependence of the order parameter and of its fluctuations at
pc is plotted in figure 2.

The above scaling forms imply that curves corresponding to different values of the
external field collapse to a single one if ρah

−β/σ and �ρah
γ ′/σ are considered as functions

of the rescaled control parameter δph−1/σ . Using the best known estimates of the critical
exponents β = 0.276 486, σ = 2.554 216 and γ ′ = 0.543 882 [8], we get beautiful data
collapses of our numerical data (see figure 3).

It is worth mentioning that the validity of the scaling behaviour of the equation of state
(4) implies the required singularity of the linear response function (3). Using the fact that the
susceptibility is defined as the derivative of the order parameter with respect to the conjugated
field we get

χ(δp, h) = ∂

∂h
ρa(δp, h) (8)
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Figure 2. The field dependence of the order parameter and its fluctuations (inset) at the critical
value pc for directed percolation. The dashed lines correspond to the expected power-law behaviour
(6), (7).
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Figure 3. The scaling plot of the order parameter and its fluctuations (inset) for directed percolation.

∼λ1−σ/β c̃sDP(δpλ−1/β , hλ−σ/β). (9)

Thus we get for the critical behaviour

χ(δp, h) = ∂

∂h
ρa(δp, h)

∣∣∣∣
h→0

∝ δp−γ (10)



Universal scaling behaviour of directed percolation and the pair contact process in an external field 10209

0.07 0.08 0.09 0.10
p

0.00

0.10

0.20

0.30

0.40

0.50

0.60

ρ a

L= 2048
L= 4096
L= 8192
L=16384
L=32768

0.07 0.08 0.09 0.10
p

10
0

10
1

∆ρ
a

D=1

PCP

Figure 4. The pair contact process order parameter ρa as a function of the particle density for
zero field (symbols) and for various values of the external field from (h = 10−4, 2 × 10−4, 5 ×
10−4, 10−3) (lines). The inset displays the order parameter fluctuations �ρa for zero field (symbols)
and for various values of the external field h (lines).

and

χ(δp, h) = ∂

∂h
ρa(δp, h)

∣∣∣∣
δp→0

∝ h−γ /σ . (11)

Here the susceptibility exponent γ is given by the scaling relation

γ = σ − β (12)

which corresponds to the well-known Widom equation of equilibrium phase transitions. Note
that in contrast to the scaling behaviour of equilibrium phase transitions the non-equilibrium
absorbing phase transition of DP is characterized by γ 	= γ ′.

Again, the validity of the scaling ansatz of the order parameter (4) can be used to check that
the implemented field satisfies the condition (3), i.e. to check whether the field is conjugated
to the order parameter or not. We apply this procedure in the following section where we
examine the scaling behaviour of the PCP.

3. Pair contact process

The PCP as introduced by Jensen [9] is one of the simplest models with infinitely many
absorbing states showing a continuous phase transition. At time t, sites on a lattice of length
L with periodic boundary conditions can either be occupied (ni(t) = 1) or empty (ni(t) = 0).
Pairs of adjacent occupied sites i, i +1, linked by an active bond, annihilate each other with rate
p or create an offspring with rate 1−pat either site i−1 or i + 2 provided the target site is empty.
The density of active bonds ρa is the order parameter of a continuous phase transition from
an active state for p < pc to an inactive absorbing state without particle pairs. The behaviour
of the PCP order parameter and its fluctuations are plotted in figure 4. The data are obtained
from simulations on various system sizes L � 131 072 with periodic boundary conditions.
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Figure 5. The field dependence of the order parameter and its fluctuations (inset) at the critical
value pc for the pair contact process. The dashed lines correspond to the expected power-law
behaviour (6), (7).

Our analysis reveals that the critical value is pc = 0.077 093(3) which agrees with the value
pc = 0.077 090(5) [10] obtained from a finite-size scaling analysis of the lifetime distribution.

In contrast to DP there is no unique absorbing state (empty lattice) but infinitely many, as
any configuration with only isolated inactive particles is absorbing. Thus in the thermodynamic
limit the system will be trapped in one of an infinite number of absorbing configurations for
p > pc. Despite the different structure of the absorbing states the steady-state scaling
behaviour of the PCP is believed to be characterized by the DP critical exponents β, γ ′, γ ,
etc. On the other hand, the dynamical scaling behaviour, associated with activity spreading of
a localized seed, depends on the details of the system preparation [3].

Recently, Dickman et al [11] considered the PCP with an external field that randomly
creates isolated particles. Thus the external field couples to the particle density but not to
the order parameter itself, i.e. the external field is not conjugated to the order parameter.
The authors observe that the external field shifts the critical values pc continuously and that
the critical exponents are unaffected by the presence of the particle source. In order to
investigate the PCP in a conjugated field the implementation of the external field of [11] has to
be modified. Several modifications of the external field are possible. For instance, in absorbing
phase transitions with particle conservation [12], the conjugated field triggers movements of
inactive particles which can be activated in this way [13].

As shown below, spontaneous particle creation with rate h acts as a conjugated field
analogous to DP. Figure 4 shows how the spontaneous particle creation smooths the critical
zero field curves similar to the DP behaviour (see figure 1). We simulated the PCP at the
critical value pc for various fields. The order parameter and its fluctuations as a function of
the external field h are presented in figure 5. Approaching the transition point, ρa and �ρa

scale according to equations (6) and (7) where the exponents β/σ and γ ′/σ agree with the DP
values.
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Figure 6. The scaling plot of the order parameter and its fluctuations (inset) for the pair contact
process.

Furthermore, we assume that the order parameter and order parameter fluctuations
analogous to DP obey the scaling forms

ρa(δp, h) ∼ λr̃PCP(δpλ−1/β , hλ−σ/β) (13)

�ρa(δp, h) ∼ λγ ′
d̃PCP(δpλ, hλσ ) (14)

where the distance to the critical point is now given by δp = (pc − p)/pc. Using the DP
values of the critical exponents β, σ and γ ′ we get convincing data collapses (see figure 6). As
pointed out above, the validity of the scaling ansatz (13) implies the singular behaviour of the
linear response function (3), i.e. the spontaneous particle creation in the PCP can be interpreted
as an external field conjugated to the order parameter. Furthermore the data collapse confirms
again that the steady-state scaling behaviour of the PCP is characterized by the DP exponents.

4. Universal scaling behaviour

One of the most striking features of critical phenomena is the concept of universality, i.e.
close to the critical point the scaling behaviour depends only on a few fundamental parameters
whereas the interaction details of the systems do not alter the scaling behaviour. In the case of
systems with short range interactions these parameters are the symmetry of the order parameter
and the dimensionality of space D [14, 15]. Classical examples of such universal behaviour
are for instance the coexistence curve of liquid–vapour systems [16] and the equation of state
in ferromagnetic systems [17]. In the case of absorbing phase transitions, the corresponding
universality hypothesis states that systems exhibiting a continuous phase transition to a unique
absorbing state generally belong to the universality class of directed percolation [18, 19]. A
different scaling behaviour is observed only in systems with additional symmetries (such as
parity conservation or particle conservation) or in systems with quenched randomness.
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Figure 7. The universal order parameter scaling function R̃DP(x, 1) of the universality class of
directed percolation. The dotted line corresponds to the result of a two-loop renormalization group
analysis of the Langevin equation [5] (see the text).

Following the concept of universality, two models belong to the same universality class if
the critical exponents and the universal scaling functions are identical. The universal scaling
functions R̃DP and D̃DP of the DP universality class can be easily determined by introducing
non-universal metric factors ci and di (see, e.g., [20]) for each scaling argument in the scaling
functions (4), (5), (13) and (14), i.e.

ρa(δp, h) ∼ λR̃DP(c1δpλ−1/β , c2hλ−σ/β ) (15)

�ρa(δp, h) ∼ λγ ′
D̃DP(d1δpλ, d2hλσ ). (16)

Using the normalizations R̃DP(1, 0) = R̃DP(0, 1) = 1 and D̃DP(1, 0) = D̃DP(0, 1) = 1, the
non-universal metric factors can be determined from the amplitudes of

ρa(δp, h = 0) ∼ (c1δp)β ρa(δp = 0, h) ∼ (c2h)β/σ (17)

and

�ρa(δp, h = 0) ∼ (d1δp)−γ ′
�ρa(δp = 0, h) ∼ (d2h)−γ ′/σ . (18)

Like the value of the critical point pc, the non-universal metric factors may depend on the
details of the considered system, e.g., the lattice structure, the boundary conditions, the used
update scheme, etc. In the case of directed site percolation in the Domany–Kinzel automaton
we have obtained the values csDP

1 = 2.45, csDP
2 = 0.112, dsDP

1 = 71.6 and dsDP
2 = 3984.

For the PCP on a square lattice we have determined the values cPCP
1 = 0.665, cPCP

2 = 0.181,
dPCP

1 = 3.21 and dPCP
2 = 62.11.

Analogous to the previous scaling analysis we set c2hλ−σ/β = 1 and consider for both
models the rescaled order parameter ρa(c2h)−β/σ as a function of the rescaled control parameter
c1δρ(c2h)−1/σ as well as the rescaled order parameter fluctuations �ρa(d2h)γ

′/σ as a function
of d1δρ(d2h)−1/σ , respectively. The corresponding data are presented in figures 7 and 8. In
both cases we get a perfect data collapse of the curves showing that the one-dimensional PCP
steady-state scaling behaviour belongs to the universality class of directed percolation.
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In addition to the universal scaling function R̃DP(x, 1), we plot in figure 7 the
corresponding curve of an ε-expansion obtained from a renormalization group analysis of
a Langevin equation (see equation (25), next section). Using the parametric representation
[21, 22] of the absorbing phase transition, Janssen et al showed recently that the equation of
state is given by the remarkably simple scaling function [5]

H(θ) = θ(2 − θ) + O(ε3) (19)

where ε denotes the distance to the upper critical dimension Dc = 4, i.e. ε = Dc − D. Here
the scaling behaviour of the quantities ρa, δp and h is transformed to the variables R and θ

through the relations

bδp = R(1 − θ) ρa = Rβ θ

2
. (20)

The equation of state is given by

ah =
(

Rβ

2

)δ

H (θ) (21)

with the metric factors a and b. The whole phase diagram is described by the parameter range
R � 0 and θ ∈ [0, 2]. Using the equations (19–21) we calculated the corresponding universal
function and compare it in figure 7 with the numerically obtained universal scaling function
R̃DP(x, 1). As can be seen the significant difference indicates that the O(ε3) corrections to
(19) are relevant, i.e. higher orders than O(ε2) are necessary to describe the scaling behaviour
of directed percolation. Of course we expect that this difference will decrease with increasing
dimension, i.e. for ε → 0.

Before closing this section we briefly mention that the dynamical scaling behaviour of
the PCP belongs to the DP universality class too if the spreading of a localized seed is
considered at the so-called natural particle density [3]. Examining spreading activity one
usually considers the survival probability Pa of the activity as well as how the number of
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Figure 9. The DP universal finite-size scaling functions P̃ and Ñ . Both quantities describe the
activity spreading of a localized seed (see the text).

active particles Na = Lρa increases in time. In the case of DP the simulations are started
with a single seed on an empty lattice. For the PCP an absorbing state at pc is prepared to
which a particle is added in order to create one seed (one active pair). At the critical point the
following power-law behaviours are expected:

Na ∝ tθ Pa ∝ t−δ. (22)

Finite-system sizes limit these power-law behaviours and Pa and Na obey the finite-size scaling
ansätze

Na(δp = 0, L) ∼ λñ(λ−1/θ t, λ−1/θzL) (23)

Pa(δρ = 0, L) ∼ λp̃(λ1/δ t, λ1/δzL). (24)

where z denotes the dynamical exponent. Analogous to the above analysis the universal
scaling curves Ñ and P̃ are obtained by introducing appropriate non-universal metric factors.
Using the values z = 1.580 745, θ = 0.313 686 and δ = 0.159 464 [8] we get convincing data
collapses and the universal scaling functions are plotted in figure 9.

5. Mean-field scaling behaviour

The mean-field equation of state of DP can be easily derived from the corresponding Langevin
equation

∂tρa = δpρa − λρ2
a + κh + D∇2ρa + η (25)

which describes the order parameter field ρa(x, t) on a mesoscopic scale (see [1] for a detailed
discussion). Here D denotes the diffusion constant, η denotes a multiplicative noise term with
the correlator

〈η(x, t)η(x ′, t ′)〉 = �ρa(x, t)δd (x − x′)δ(t − t ′) (26)
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Table 1. The configuration of a PCP lattice before (C) and after (C ′) an event. Only the sites left
and right of those changed by particle creation (top), pair annihilation (middle) or particle creation
due to the external field (bottom) are shown. Empty sites are marked by ◦, and occupied sites
by •. Here, �na denotes the change of the number of active bonds, �ni the respective change
of inactive bonds, �ne that of empty bonds and P is the corresponding probability of the event if
spatial correlations are neglected.

C C ′ �na �ni �ne p(C → C ′)

• ◦ • • • • +2 −2 0 (1 − p)ρaρ
2
i

• ◦ ◦ • • ◦ +1 0 −1 (1 − p)ρaρiρe

◦ ◦ • ◦ • • +1 0 −1 (1 − p)ρaρiρe

◦ ◦ ◦ ◦ • ◦ 0 +2 −2 (1 − p)ρaρ
2
e

• • • • • ◦ ◦ • −3 +2 +1 pρ3
a

◦ • • • ◦ ◦ ◦ • −2 0 +2 pρ2
a ρi

• • • ◦ • ◦ ◦ ◦ −2 0 +2 pρ2
a ρi

◦ • • ◦ ◦ ◦ ◦ ◦ −1 −2 +3 pρaρ
2
i

• ◦ • • • • +2 −2 0 hρ2
i

• ◦ ◦ • • ◦ +1 0 −1 hρiρe

◦ ◦ • ◦ • • +1 0 −1 hρiρe

◦ ◦ ◦ ◦ • ◦ 0 +2 −2 hρ2
e

and λ > 0, κ > 0 and � > 0 are certain coupling constants. Neglecting spatial correlations
and fluctuations (D = 0 and η = 0) one gets for the steady-state behaviour (∂tρa = 0)

δpρa − λρ2
a + κh = 0 (27)

from which it is easy to derive the universal scaling function

ρa = R̃DP
(
cDP

1 δp, cDP
2 h

) = cDP
1 δp

2
+

√
cDP

2 h +

(
cDP

1 δp

2

)2

(28)

where the non-universal metric factors are given by cDP
1 = 1/λ and cDP

2 = κ/λ, respectively.
For zero field we get the solutions ρa = 0 (absorbing state) and ρa = cDP

1 δp, i.e. the mean-
field value of the order parameter exponent is β = 1. On the other hand, δp = 0 leads
to ρa = (

cDP
2 h

)1/2
implying σ = 2. As recently shown the universal scaling function (28)

describes not only the scaling behaviour of the DP universality class but it also occurs in the
different universality class of absorbing phase transitions with a conserved field [23].

Let us now consider the following modification of the PCP. An active bond produces an
offspring with rate (1 − p) at an empty site selected at random. The rules for annihilation and
action of the external field remain unchanged. This random neighbour interaction suppresses
long range correlations, and the model is, therefore, expected to be characterized by the mean-
field scaling behaviour. We denote the density of inactive bonds between an occupied and
an empty site as ρi. Bonds between empty sites are denoted as ρe. Normalization requires
ρe + ρi + ρa = 1.

Depending on the sites adjacent to the target site the number of active bonds na, inactive
bonds ni or empty bonds ne is changed. For instance, if the adjacent sites are empty, for which
the probability in the absence of correlations is ρ2

e , the number of empty bonds decreases by
two (�ne = −2). On the other hand, there are two new inactive bonds (�ni = +2). The total
probability for this event is (1 − p)ρaρ

2
e . A list of all possible processes and their mean-field

probabilities is given in table 1. Thus we obtain rate equations for the expectation values



10216 S Lübeck and R D Willmann

E[�nx] of the changes in active, inactive and empty bond numbers. These expectation values
are zero in the steady state, i.e.

E[�nx] =
∑
�nx

�nxp(�nx) = 0 (29)

with x ∈ {a, i, e}. In the case of E[�na] we get

E[�na] = −3pρ3
a − 4pρ2

a ρi − pρaρ
2
i + 2(1 − p)ρaρ

2
i

+ 2(1 − p)ρaρiρe + 2hρ2
i + 2hρiρe = 0 (30)

whereas we get for the inactive bonds

E[�ni] = −2(1 − p)ρaρ
2
i + 2(1 − p)ρaρ

2
e + 2pρ3

a − 2pρaρ
2
i − 2hρ2

i + 2hρ2
e = 0. (31)

Using these equations together with the normalization allows the calculation of the order
parameter for zero field (h = 0) which yields the non-trivial (ρa > 0) solution

ρa = 8 − 3p2 − 5p − 2
√

2p(1 − p)(3p − 4)2

9p2 − 9p + 8
. (32)

This solution is valid below the mean-field critical point pc = 8/9, whereas the trivial solution
ρa = 0 is valid for all p but unstable above pc. Expanding (32) around the critical point leads
to

ρa = 3
8δp + O(δp2) (33)

with δp = (pc − p)/pc. Thus the mean-field exponent of the PCP is β = 1 and the non-
universal metric factor cPCP

1 = 3/8.
In order to obtain the order parameter in the presence of an external field h equations (30)

and (31) are solved for ρi which yields

4h + 4ρa − 4hρa − 4pρa − 4ρ2
a +

{
−12p2ρ2

a +
(
2h + 2ρa − 2hρa − 2pρa − 2ρ2

a − 2pρ2
a

)2
}1/2

−
{(−2h − 2ρa + 2pρa + 2ρ2

a − 2pρ2
a

)2
+ 4pρa

(
h + ρa − 2hρa

− pρa − 2ρ2
a + hρ2

a + 2pρ2
a + ρ3

a

) }1/2
= 0. (34)

To obtain the field dependence of the order parameter, a series expansion around h = 0 at
pc = 8/9 is performed which results in leading order

ρa =
√

3
8h (35)

i.e. the mean-field values of the PCP are given by cPCP
2 = √

3/8 and σ = 2.
Finally we derive the mean-field universal scaling function R̃ of the PCP. Therefore,

we write (34) as a function of the reduced control parameter δp and perform the limits
ρa → 0, δρ → 0 and h → 0 with the constraint that ρa/

√
h and ρa/δp are finite. Thus we

remain in leading order with
3
8δpρa − ρ2

a + 3
8h = 0. (36)

Solving this equation yields

ρa = 1
2

3
8δp +

√
3
8h +

(
1
2

3
8δp

)2 = R̃DP
(
cPCP

1 δp, cPCP
2 h

)
. (37)

Thus we have shown that both models are characterized by the same critical exponents and
scaling function, i.e. similar to the (1 + 1)-dimensional case, the mean-field solution of the
PCP belongs to the mean-field universality class of directed percolation.
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